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1 Introduction

In this experiment, we study a conditional diffusion model trained on the MNIST
dataset, analyze the efficacy of classifier-free guidance, and explore the effects
of the guidance scale on the clarity and diversity of generated samples. We then
train a simple classifier on MNIST and analyze guidance strength’s effects on
classifier accuracy of generated samples. This writeup does not propose a new
method; rather, it clarifies the distributional effects and failure modes of the
guidance scale.

2 Setup

The MNIST digits are grayscale 28 x 28 images with labels y € {0,...,9},
normalized to [—1,1].

The forward process used exclusively during training is a Markov process,
which begins with the data distribution xy and iteratively adds time-dependent
Gaussian noise to each digit over T time steps, causing the distribution to lose
structure and tend towards random noise. The forward process ¢ is defined as

q(xe]zi—1) = N(ze;20-17/1 — B, 1By), (1)

where (3; is the amount of noise added at time ¢, sampled from a cosine beta
schedule. The forward schedule is re-parameterized to enable accelerated train-
ing:

q(zi|wo) = N (; Varzo, (1 — ay)L. (2)
dt:Hak ap=1-p5 (3)
k=0

Written differently, the forward process can be sampled at any timestep ¢ by
linearly combining the initial distribution zy with noise € ~ AN(0,I) using the
following formula:

s = Vauxo + (1 — ay)e (4)



The reverse process is learned in training and used in sampling. A time-
conditioned model m with parameters 6 is trained to predict the ¢ used in the
forward process using MSE loss:

Lo =By collle = mo(ae,t,y)lI°). (5)

The model is conditioned over ¢t and y. During sampling, the model iteratively
removes noise using the following formula and returns zg as a generated sample.
We use my to denote network output and ey to denote the effective noise estimate
used during sampling.
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Because we condition the model on labels, rather than training a new model
for every label, setting eg(x,t,y) := mg(z,t,y) results in insufficient separa-
tion between class-conditioned modes. To prevent this, during training, label
dropout is used to train the model both conditionally and unconditionally. eg
is then defined as a linear combination of the conditional and unconditional
predictions:

eo(x,t,y) == (1+ s)mg(z,t,y) — smo(z, 1, D), (7)

where s > 0 is the guidance scale. Doing this allows the model to amplify label-
dependent features and biases the reverse process towards higher conditional
likelihood.

3 Method

In these experiments, a UNet with 16 base channels, residual-block layers, two
max-pool downscale layers, and two learned upscale channels were used. The
model is conditioned over the timestep ¢ and the label y. ¢ was encoded using
sinusoidal embedding and added to the hidden layers within each residual block.
y was similarly added to each hidden layer using a learned embedding. The
model was conditioned over T = 1000 timesteps.

The model was trained over 4000 gradient steps using Adam with learning
rate 1073, batch size 128, and label dropout probability p = 0.1.

The model is sampled using stochastic DDPM noise prediction described in
equation 6. €y is calculated using classifier-free guidance: a linear combination
of the conditional model prediction and the unconditional model prediction
dependent on the guidance strength s, described in equation 7.

Classifier-free guidance operates under the empirical observation that the
conditioned model does not adequately emphasize the label-dependent features
and assumes that the difference between conditional and unconditional estimates
estimates a class-conditioned score component.



0412

|
C3ls

Figure 1: Sample of each digit; guidance strength s = 3.

4 Experiments

4.1 Class-Controlled Samples

First, we sample the conditioned model with classifier-free guidance to test if it
could reliably generate each digit. A guidance strength s = 3 is used. As shown
in Figure 1, each digit class is visually distinguishable and the samples shown
do not contain obvious cross-class artifacts.

4.2 Guidance Scale Samples

Next, we sample the class y = 3 at each guidance strength to test the effects
of the guidance strength s on the diversity and correctness of samples. The
random seed used during sampling is fixed such that the seed is the same for
each guidance strength. This makes discrepancies between each trial dependent
only on the guidance strength, but it can bias the distributional measurements
if the random seed generates an improbable distribution.

As shown in Figure 2, low guidance strengths (s < 1.0) result in samples not
representative of the distribution of class y = 3, with artifacts from the class
y = 8 particularly visible in the shown samples. Guidance strength s = 0.0
represents the conditioned model without any classifier-free guidance and results
in samples that are not distinguishably a 3. High guidance strengths (s > 15.0),
on the other hand, result in samples with extreme values, exaggerated scale of
label-dependent features, and lack of diversity. For the sampling setup of the
digit 3 used above, a favorable tradeoff with minimal artifacts but clear diversity
is the range s € [2.0,5.0].

4.3 Classifier Evaluation

Finally, to produce quantitative evidence about guidance scale parameterization,
we trained a classifier to predict a digit’s label from the sampled pixels and
analyzed the classifier’s accuracy and confidence by guidance scale.

The classifier ¢ with parameters ¢ has two convolutional layers that map to
4 channels separated by a max-pooling layer of kernel size 2, followed by two
linear layers with 16 hidden neurons, ReLLU activation function, and 10 output
neurons that pass through softmax to produce probabilities. The classifier was
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Figure 2: Three samples of the digit 3, generated at 14 different guidance scales.
From left to right: s = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 7.5, 10.0,
15.0, 20.0. Note that the lighter backgrounds of s = 15 originate from rescaling
the image values; the samples had extreme negatives, not lighter backgrounds.

trained over real MNIST only, not generated samples, with 4000 iterations using
Adam optimizer with batch size 128 and learning rate 10~2. During training, a
small amount of noise (w ~ AN(0,0.1)) was added to each input to account for
the generated samples’ small amount of background noise. The loss function
Ly is the MSE between the one-hot embedding of y and the predicted class
probability vector, ¢, = softmax(f,), with C' = 10 representing the number
of classes. Although cross-entropy is standard for classification, we use mean
squared error for simplicity and because relative accuracy across guidance scales,
not absolute calibration, is useful for our comparative analysis.
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Lo=5 D (eyi— o) (8)
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The diffusion model was used to generate 200 samples of random digits at
each guidance scale. For reasons described in Section 4.2, the random seed was
fixed across guidance scales. After each sample is generated, the classifier is
run to assign a probability of the correct label y being assigned to the digit, as
shown in Figure 3. Statistics of these probabilities are collected in Table 1. The
model generates samples with classifier accuracy greater than 90% when 0.75 <
s < 3.5, with the highest accuracy at s = 2.0. Assuming classifier confidence
is highest when the samples are most similar to the MNIST training data,
this suggests that, under the provided sampling conditions, the diffusion model
generates samples most similar to the training data when s = 2.0, although
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Figure 3: Noise-controlled samples of the digit y = 7 at various guidance
strengths s € {0,1,3,5,7.5,10}, and the probability p assigned by the clas-
sifier of the digit y = 7 for each sample. Contrary to the digit y = 3, shown
in Figure 2, which consistently generated high-quality samples even at higher
guidance scales (s > 7.5), the sample quality of the digit y = 7 begins to dete-
riorate as low as s = 5.

s p Op Acc, | [0,0.01) [0.01,0.1) [0.1,0.9) [0.9,1.0]
0.00 | 0.6948 0.4055 0.700 | 0.090 0.120 0.195 0.595
0.25 | 0.7792 0.3566 0.785 | 0.055 0.070 0.210 0.665
0.50 | 0.8501 0.3040 0.850 | 0.0350 0.040 0.135 0.790
0.75 ] 0.8983 0.2569 0.915 | 0.0300 0.025 0.105 0.840
1.00 | 0.9215 0.2197 0.935 | 0.025 0.010 0.105 0.860
1.25 | 0.9465 0.1825 0.965 | 0.020 0.010 0.065 0.905
1.50 | 0.9531 0.1763 0.965 | 0.020 0.005 0.060 0.915
1.75 |1 0.9591 0.1594 0.965 | 0.015 0.000 0.065 0.920
2.00 | 0.9565 0.1668 0.970 | 0.015 0.005 0.055 0.925
2.50 | 0.9469 0.1960 0.955 | 0.025 0.005 0.045 0.925
3.00 | 0.9340 0.2239 0.940 | 0.040 0.005 0.045 0.910
3.50 | 0.9026 0.2711 0.905 | 0.065 0.010 0.060 0.865
4.00 | 0.8561 0.3318 0.855 | 0.090 0.025 0.055 0.830
5.00 | 0.8325 0.3609 0.840 | 0.125 0.025 0.035 0.815
7.50 | 0.6582 0.4611 0.655 | 0.290 0.015 0.065 0.630
10.0 | 0.3821 0.4681 0.385 | 0.545 0.040 0.075 0.340
15.0 | 0.0985 0.2827 0.105 | 0.840 0.045 0.035 0.080
20.0 | 0.1512 0.3462 0.150 | 0.795 0.035 0.040 0.130

Table 1: Classifier accuracy on various guidance scales, with sample size at each
guidance scale n = 200, guidance scale s, mean probability assigned to correct
label by classifier yu,, standard deviation of probability o, and top-1 accuracy
Acc,. Each range indicates the fraction of samples with assigned probabilities
< 0.01, 0.01 — 0.1, 0.1 — 0.9, and > 0.9.

samples are still easily identifiable for 0.75 < s < 3.5.



5 Conclusion

We examined how classifier-free guidance affects the sample quality and diver-
sity of conditioned diffusion models on the MNIST dataset. We found that
lower guidance scales tend to result in more diversity but also more cross-class
artifacts, while higher guidance scales tend to result in less diversity, extreme
values, and exaggerated label-dependent features. Additionally, having fixed
noise and fixed digit sampling may bias our training; because different digits
have different optimal guidance scale, randomly sampling digits could result in
imbalanced experimentation, even at sample sizes as high as n = 200. Finally,
the MNIST dataset is much simpler than other datasets and thus may exhibit
different behavior than datasets with more complicated distributions. A key
observation we made was that for some digits, such as y = 3, samples were still
high quality even at higher guidance scales (s = 10.0), while other digits’ sam-
ple qualities, for digits such as y = 7, deteriorate at much lower guidance scales
(s > 5.0), suggesting that a single global guidance scale may be suboptimal even
for simple datasets.



